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EXECUTIVE SUMMARY 
The emergence of autonomous and connected trucks (ACTs) brought about significant changes in 
freight delivery, impacting efficiency, safety, energy consumption, and infrastructure durability. One 
important change has been the formation of truck platoons, made feasible and practical by the 
intelligent technologies integrated into ACTs. Although truck platooning has benefits in fuel 
consumption and traffic efficiency, it requires substantial computational resources to optimize the 
aerodynamic performance of the platoon. To overcome these challenges, data-driven surrogate 
models have been developed that significantly improve computational efficiency. We compared the 
performance of the generalized additive model and neural network surrogate model to baseline data-
driven models that included linear regression and support-vector regression. The results demonstrate 
the effectiveness of using surrogate models for drag-force prediction and highlight their potential for 
real-time applications in truck platooning. 

Furthermore, a fuel-consumption and cost analysis of truck freight delivery was conducted as case 
study. The real wind-speed and -direction data were collected from a wind station close to the 
corridor. The length of the corridor was 161 km (100 mi), with high platoonability. The wind history 
along the highway segment was analyzed, and delivery windows were established based on the 
fluctuations in wind speed and direction. The study demonstrated the potential for truck platooning 
to reduce fuel consumption. Additionally, by automating truck delivery, the fuel consumption for 
truck operation and the required number of truck drivers were reduced, which made the bulk of the 
operational cost less than in the conventional delivery scheme. 
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CHAPTER 1: INTRODUCTION 

OVERVIEW 
Unmanned aerial vehicles (UAVs), more commonly known as drones, are rapidly gaining recognition 
within the logistics industry as viable alternatives for fulfilling short-range mobility needs, as they 
have demonstrated superior efficacy due to their ability to traverse low-altitude airspace, facilitating 
faster, more automated, and more direct point-to-point deliveries (Jokisch and Fischer, 2019). 
Leading logistics enterprises are capitalizing on these advantages by considering drones for last-mile 
delivery services. In 2016, Amazon’s Prime Air successfully completed the first commercial drone 
delivery, transporting a package of 2.6 kg (5.73 lbs) over 7 mi in just 13 min (Perlow, 2016). Since 
then, FedEx, UPS, and DHL have all launched dedicated initiatives to explore this technology’s 
potential (Frachtenberg, 2019), signaling a trend that's gradually gaining public trust. This momentum 
is also being met with regulatory adaptation. In 2020, the US Federal Aviation Administration (FAA) 
granted Amazon approval to deploy drone fleets for parcel delivery within the United States, albeit 
under stringent safety regulations (Palmer, 2020). Similarly, various government agencies are 
proactively developing policies to facilitate the large-scale industrial deployment of drone-based 
deliveries (Zoldi, 2021), demonstrating their increasing recognition as a practical and beneficial 
logistic solution. 

Innovations and adaptations to accommodate drone-based delivery have also been reflected in the 
research sphere, with numerous studies developing conceptual designs for these systems. For 
instance, the “drone’s nest” concept posits facilities that function as both warehouses and centralized 
dispatching centers, akin to distribution centers in traditional last-mile logistics. In these scenarios, 
each drone is directly dispatched from the facilities, making a round trip to carry the parcel to the 
assigned customer. In this paper, we refer to this family of operations as depot–drone (DD). 
Shavarani et al. (2019) advanced this idea by formulating a facility–location problem, optimizing 
charging- and launching- station placement to minimize costs and avoid overly long trips. Similarly, 
Chauhan et al. (2022) studied a facility–location and online-demand-allocation problem in delivery 
services using drones. Other bodies of research have concentrated on optimizing drone-delivery 
routes, with some considering elements such as varying drone capacities, priority of deliveries, and 
dynamic demand (Chiang et al., 2019; Kim, 2017). Dorling et al. (2016) put forth a vehicle-routing 
problem designed to minimize total operating costs for sequential drone deliveries. Pachayappan and 
Sudhakar (2021) proposed a mathematical model and heuristic solution for planning optimal pickup 
and delivery routes in drone operations. 

Existing drone models are typically capable of carrying one parcel at a time, therefore fulfilling one 
delivery demand per trip. This arrangement necessitates operating a large fleet of drones 
concurrently, which can result in aerial traffic congestion, particularly around active neighborhoods 
or concentrated-demand areas. Although research on the impact of such congestion is still limited, 
it’s an area that warrants attention. Evaluating drone traffic presents a unique challenge. Traditional 
congestion models, such as the family of min-cost flow problems with nonlinear link cost, struggle to 
represent the myriad route options in a reasonable graph of the airspace. In response, She and 
Ouyang (2021) took a continuous approach, defining the steady-state traffic equilibrium as a system 
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of partial differential equations (PDEs). They illustrated how local traffic delays for drones can 
diminish operational efficiency and increase battery-power consumption. This research also pointed 
out that although drones extend service reach over long distances, high-demand areas may limit the 
effective service range. In addressing this dilemma, a hybrid delivery system that combines drones 
with traditional surface-transportation vehicles (for line-haul shipments) presents itself as a 
promising solution. The conceptual framework for this hybrid system involves a truck carrying a large 
number of parcels and a fleet of drones, traversing the city along a designated route. Drones then, 
deployed from the truck, deliver parcels to customers’ doorsteps. In this simplest form of 
collaboration, which we refer to as stationary truck–drone (STD), drones can be dispatched when the 
truck stops at certain nodes, mimicking the method discussed by She and Ouyang (2021). Such a 
collaboration could be made even more efficient by integrating drones with moving delivery vehicles, 
which we refer to as mobile truck–drone (MTD), leveraging the strengths of each vehicle type. 
Carlsson and Song (2018) proposed allowing drones to be dispatched from a moving truck and then 
catch up with the truck later. This approach not only extends the drone’s service range but also 
enhances the accessibility of the truck and reduces its route length, optimally balancing efficiency and 
flexibility. Liang and Lui (2022) recently conducted a comprehensive review of such efforts. The 
synchronized routing of trucks and drones has been termed the truck–drone routing problem (TDRP) 
(Laporte, 2009). Its simplified version, which involves only one truck and one drone, is known as the 
traveling-salesman problem with drones (TSPD) or the flying-sidekick, traveling-salesman problem 
(FSTSP), formulated as a mixed-integer program by Murray and Chu (2015). Although the TDRP 
(Laporte, 2009) and TSPD (Murray and Chu, 2015) models offer valuable insight into efficient vehicle 
routing, they do not fully capture the complexity of real-world logistics scenarios, which often involve 
more than two vehicles (trucks and drones). In response, some studies have focused on the 
coordination of a single truck with a fleet of drones (Murray and Raj, 2020; Carlsson and Song, 2018). 
This problem also aligns closely with the school bus–routing problem (SBRP) (Park and Kim, 2010), 
which simultaneously involves selecting bus stops and routing the bus. The solution to the SBRP 
primarily follows a location-allocation-routing strategy, sequentially selecting bus stops, assigning 
demand to bus stops, and designing bus routes. Meanwhile, considering demands as continuously 
emerging in a region transforms the problem into one of covering the region with an optimally placed 
swath (i.e., the service range of the drones from the truck), also referred to as the covering-path 
problem. This problem has been explored in various forms in the literature (Zeng et al., 2019) and is 
usually solved via a decomposition-routing strategy. 

In a closer look at congestion issues, She and Ouyang (2022) employed the steady-state, traffic-
equilibrium model to evaluate delivery efficiency under various operational conditions in an area 
served by a single moving truck. They noted the need for collaborative routing among multiple trucks 
to service a large domain, taking into account the finite truck capacity. Going further, to consider a 
fleet of trucks each equipped with multiple drones, Wang and Sheu (2019) introduced the vehicle-
routing problem with drones (VRPD). This model features trucks hauling parcels and drones among a 
set of stationary, ground-based hubs. However, joint optimization for the discrete routing decisions 
of trucks and drones is undoubtedly challenging; and so far, only worst-case scenarios have been 
studied. With this in mind, a possible approach is to combine the continuous-traffic-equilibrium 
model for drone routing in hybrid delivery with the family of discrete VRP models for truck routing, 
naturally following a partition-first, route-second philosophy. Here, the large delivery domain is first 
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decomposed into regions, each served by a single truck. The routes of a fleet of trucks are then 
collectively determined to minimize overall operational costs, while ensuring all demands in all areas 
are serviced. 

OBJECTIVES 
Although various drone/truck–drone delivery schemes have been proposed, each has distinct 
advantages that may make it suitable for various scenarios. To best meet the varying needs of 
different demand characteristics over the space, it may be beneficial to consider a range of delivery 
schemes to be simultaneously deployed. Each of the schemes potentially requires specific 
infrastructure or technological investment, such launching devices on trucks to enable drone 
launching/landing in motion. However, as of this writing, there is no known research that addresses 
collaborative routing decisions for a hybrid delivery system that explicitly takes into consideration a 
variety of delivery schemes, vehicle types, and aerial-traffic congestion.  

This paper seeks to fill that gap by making several contributions. First, the paper proposes a practical 
design framework to determine decisions for drone and truck routing in a collaborative last-mile 
delivery system. This system considers multiple potential delivery modes for local deliveries. 
Meanwhile, multiple types of trucks can be operated, each truck compatible with a certain set of 
delivery modes. By following a partition-first, route-second philosophy, the delivery domain is first 
decomposed into disjoint regions. Each of these regions has approximately homogeneous demand 
characteristics and is to be serviced with one mode, by one truck, in one visit. The optimal strategy 
for servicing each region is determined in conjunction with the routing strategies of the trucks. The 
collective routing decisions over regions are modeled in a variant of the multi-type, multimode 
vehicle-routing problem as a mixed-integer program, and an efficient heuristic algorithm is proposed. 

Second, we consider multiple candidate delivery schemes that facilitate drones and trucks for 
delivery in different manners (i.e., DD, STD, and MTD). These schemes are conceptually illustrated in 
Figure 1, in which the delivery region is a circle over a roadway network formed by square grids, and 
a depot located at the southwest corner conducts the delivery. The delivery costs and efficiency of 
serving a region with each candidate mode are examined and compared, providing the basis for 
determining the optimal routing of trucks in the integrated design framework. Last, the applicability 
of the proposed design framework is demonstrated on both a grid network and real-world networks. 
A sensitivity analysis is also conducted with respect to key parameters, to draw operational insights. 
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Figure 1. Diagrams. Four modes of delivery schemes. 
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CHAPTER 2: CONTINUOUS MODELS FOR TRUCK–DRONE 
DELIVERY SYSTEMS 
In this section, we succinctly introduce a few model components that are associated with two drone 
delivery strategies: one from a stationary point and one from a moving truck.  

These elements will subsequently form the building blocks of the design framework in this paper. 

DRONE DELIVERY FROM A STATIONARY POINT 
Consider a continuous, closed domain Ω where the logistics carrier operates a large fleet of drones 
from a central depot to serve the demand within the domain. These demands are assumed to 
randomly emerge at a time-invariant yet spatially dependent inflow rate, 𝜌𝜌0(𝑥𝑥),∀ 𝑥𝑥 ∈  Ω. The local 
traffic condition in the low-altitude airspace at steady state is indicated by a continuous density 
function. In the absence of traffic congestion, drones can travel freely at their peak speed, 𝑣𝑣𝑑𝑑,0. The 
impact of traffic congestion is encapsulated by the degradation of drone speed, estimated as a 
nonincreasing function of the local traffic density (She and Ouyang, 2022). Some earlier work 
described travel speed as a function of the local flux instead; e.g., as by She and Ouyang (2021). 

Drones are presumed to communicate and exchange information; however, each independently 
seeks its optimal route to minimize its individual total travel cost. If all drones adhere to such routes, 
with no drone able to reduce its own travel cost through a unilateral path modification, the system is 
said to have reached the user equilibrium per Wardrop’s principle (Wardrop, 1952). To find these 
optimal routes, we introduce a continuous potential function that equals the total travel cost for a 
drone to travel from 𝑥𝑥 to its destination along the least-cost route. As demonstrated by She and 
Ouyang (2021), the equilibrium condition can be represented as a system of PDEs that can be solved 
using a specialized finite-element algorithm. 

The resulting potential function from the PDE solution provides information on each drone’s travel 
cost under equilibrium conditions. Furthermore, the optimal route for each drone can be constructed 
from this solution using Euler’s method. For modeling simplicity, we consider a domain of a certain 
regular shape (e.g., a circle) with a homogeneous demand rate 𝜌𝜌0 across the domain. The key output 
is the average round-trip travel time, denoted as , We solve the PDEs over a range of likely 
combinations of 𝜌𝜌0 and |Ω| and in so doing providing a surrogate model that can be used to 
interpolate  for a generalized domain. Such a model provides a basis to evaluate the 
performance of the delivery system proposed in later sections. 

DRONE DELIVERY FROM A MOVING SOURCE 
A hybrid delivery scheme involves a mobile launching platform, such as a truck, which transports 
drones and goods to an optimal distance from the customer locations. From there, drones embark on 
their delivery mission and subsequently return to the truck positioned further along the route. By 
strategically coordinating the drone and truck operations, it’s possible to mitigate the adverse effects 
of traffic congestion, thereby striking a balance between flexibility and efficiency of both delivery 
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modes. Suppose that the delivery truck operates at a constant truck speed 𝑣𝑣𝑡𝑡. Meanwhile, drones are 
dispatched to make direct deliveries to customers on both sides of the road within a perpendicular 
distance of 𝑊𝑊 from the truck. If the demand density in the domain is uniform, the drone traffic near 
the truck can be considered in a steady state. The study by She and Ouyang (2022) has demonstrated 
that the traffic-equilibrium condition, as perceived from the truck’s viewpoint, can be formulated as a 
system of PDEs involving the potential function. A physics-informed, neural network (PINN) algorithm 
equipped with suitable convergence-enhancing techniques is then employed to solve the PDEs. A 
surrogate model yielding the average delivery time  can again be constructed. 
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CHAPTER 3: HYBRID DELIVERY-SYSTEM DESIGN 
Consider service domain Ω, in which delivery demands uniformly emerge at rate  �̅�𝜌0  . The logistics 
carrier operates a fleet of drones and trucks and conducts service every 𝐻𝐻 units of time within a 

duration window of 𝐻𝐻′. As such, the demand upon delivery is regulated as . Each truck 
belongs to one of the predefined truck types 𝑙𝑙 ∈ 𝐿𝐿 , which can be used to conduct certain delivery 
modes 𝑚𝑚 ∈ 𝑀𝑀. Different types of trucks are likely to have distinct characteristics, such as trucking 
costs, denoted as {𝑤𝑤𝑡𝑡

𝑙𝑙,∀ 𝑙𝑙 ∈ 𝐿𝐿}  per unit distance, and cargo capacities, denoted as {𝑄𝑄𝑙𝑙,∀ 𝑙𝑙 ∈ 𝐿𝐿}. All 
types of trucks are assumed to always operate at a constant speed 𝑣𝑣𝑡𝑡 except for conducting the MDT 
delivery mode, for which we specify the designed truck speed for serving region 𝑐𝑐 as 𝑣𝑣𝑡𝑡,𝑐𝑐. 

In designing most logistics systems, at least two phases of decisions must be made sequentially. The 
tactical phase concerns long-term decisions, such as the fleet size of vehicles—both trucks and 
drones—to invest in and maintain; and the frequency of delivery, often advertised as a service 
standard to the customers. These decisions are made before the service is provided, hence are based 
on a belief in the expected demand pattern over the service domain. Specifically, suppose we 
possess, from analyzing historical data, the steady-state, demand-rate function �̅�𝜌0(𝑥𝑥) that describes 
the expected arrival rate of demand. We wish to determine the number of drones and trucks of all 
types that is required to sustain a service that makes a delivery at a designed headway 𝐻𝐻. The 
operational phase, in contrast, concerns mission-specific decisions. Upon every delivery mission, the 
logistics carrier observes a set of discrete demand points 𝐷𝐷 and determines the routing of trucks and 
drones to best serve all demands using the available fleets. In both phases, the complete delivery 
plan must be made; and the design components largely overlap, except for the treatment of the 
demand (i.e., as a continuous function or as a set of discrete points). In this section, we focus on the 
tactical phase and propose the integrated framework, which (taking the continuous demand 
distribution over the domain as input) aims to determine optimally all pertinent strategies and 
decisions to carry out the delivery service. The design workflow is decomposed into solving several 
subproblems; for each of which, we state the key objective, input, and output, and suggest an 
efficient method to yield a near-optimal solution. Adaptations are introduced along the way as 
needed to cope with discrete demand for the operational phase. 

DELIVERY-DOMAIN PARTITIONING 
Considering the continuous demand-rate-distribution function �̅�𝜌0(𝑥𝑥), we partition the service domain 
Ω into nonoverlapping subregions {Ω𝑐𝑐,∀𝑐𝑐 ∈ 𝐶𝐶}, such that the demand rate in each subregion is 
approximately homogeneous. That is, we wish to minimize the nonhomogeneity in each subregion 𝑐𝑐, 
which can be measured by a continuous variance-like metric: 

 
Figure 2. Equation. Density non-homogeneity metric. 
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where �̅�𝜌0,𝑐𝑐 denotes the average demand rate in Ω𝑐𝑐. Additionally, it is convenient to require each 
subregion to be convex, such that the covering swaths introduced in Chapter 3 can be constructed 
with simple approaches without incurring excessive deadheading. Last, the demand within each 
subregion should be served by a single visit of a truck of any type without exceeding its capacity.  

A simple yet efficient approach to identifying density-homogeneous partitions is to construct the 
level contour of �̅�𝜌0(𝑥𝑥). As such, the difference in demand rate in each contour level is bounded by 
the contour interval. The resultant contour levels are nonoverlapping polygons but are very likely 
nonconvex. There exist abundant methods to further decompose arbitrary shapes into convex 
polygons; but for well-shaped contour levels resulting from choosing a reasonable contour interval, a 
trapezoidal decomposition method (Choset, 2000) would be sufficient. To ensure the capacity 

requirements hold, the subregions are further refined into  parts as needed with 
approximately the same areas. For two-dimensional geometries, we find the centroidal Voronoi 
tessellations generated by the Lloyd algorithm (Du et al., 2006), using low-variance seeds generated 
by the quasi-random Halton sequence (Wang and Hickernell, 2000), yields satisfying refinement. 

Denote 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) as the directed roadway network in the domain. We can identify the boundary 
nodes for this subregion as 𝐵𝐵𝑐𝑐  =  {𝑖𝑖 ∈  𝑉𝑉: 𝑥𝑥(𝑖𝑖) ∈  Ω𝑐𝑐 , 𝑥𝑥(𝑗𝑗) ∉ Ω𝑐𝑐,∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸}, where 𝑥𝑥(𝑖𝑖) denotes 
the spatial coordinate of node 𝑖𝑖. Alternatively, the boundary node can be defined as the intersection 
of the edges with the boundary of Ω𝑐𝑐. Such an approach can be a more accurate graph reduction of 
the subregions but requires additional treatment to recover the original graph connectivity. The 
interior nodes of Ω𝑐𝑐 are identified as 𝐼𝐼𝑐𝑐  =  {𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝐵𝐵𝑐𝑐: 𝑥𝑥(𝑖𝑖) ∈ Ω𝑐𝑐}. The subgraph spanned by 𝐵𝐵𝑐𝑐, 𝐼𝐼𝑐𝑐, 
and 𝐸𝐸 forms the basis for the problems discussed in later subsections. 

Now suppose we wish to perform domain decomposition based on the discrete demand 𝐷𝐷 observed 
in the operational phase. First, we divide 𝐷𝐷 into a set of nonoverlapping exhaustive clusters {𝐷𝐷𝑐𝑐,∀𝑐𝑐}, 
such that the demand density in each cluster is approximately homogeneous, while the difference in 
demand density is large across clusters. After the demand points are clustered, the convex hull of 
cluster 𝑐𝑐 naturally gives a polygonal representation of subregion Ω𝑐𝑐. The combinatorial formulation of 
the clustering problem is well known to be NP-hard and intractable to be solved exactly. However, 
there exists plenty of heuristics to yield suboptimal solutions, such as the hybrid density-based 
clustering algorithm (HDCA)(Fahim, 2018), which is an extension to the well-known DBSCAN 
algorithm (Schubert et al., 2017). In summary, the algorithm identifies clusters by iteratively 
expanding points within a cutoff distance from a member point. Upon constructing a new cluster, an 
initial point of 𝑑𝑑0 is selected; and the cutoff distance is often set as the average distance from 𝑑𝑑0 to 
its 𝑞𝑞1 nearest points. A candidate point is clustered only if it has at least 𝑞𝑞2 neighbors within the 
cutoff distance. As such, the average density in the cluster is gauged by the neighborhood of the 
initial point and is maintained as the cluster expands. We hence have control over the clustering 
behavior through the two parameters, 𝑞𝑞1 and 𝑞𝑞2. Here, 𝑞𝑞1 influences the shape skewness of the 
clusters. For example, letting 𝑞𝑞1 = 1 allows a chain of points to be identified as a cluster. It was 
shown by experiments that by using reasonable 𝑞𝑞1 values (e.g., larger than 4), the algorithm yields 
geometrically convex clusters. Further, if 𝑞𝑞1 and 𝑞𝑞2 are close in value, the algorithm yields a large 
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number of fine clusters with high homogeneity, and vice versa. In addition, the capacity constraints 
can be easily enforced by adding 𝑚𝑚𝑖𝑖𝑛𝑛𝑙𝑙∈𝐿𝐿 𝑄𝑄𝑙𝑙 as a terminating threshold in the expanding steps. 

DELIVERY-REGION-COVERING COST 
A single region can be served by one of the four delivery modes presented in Figure1, i.e., DD, STD, 

MTD, or truck-only, coded by 𝑚𝑚 ∈  𝑀𝑀 =  {0, 1, 2, 3}, respectively. Denote  as the covering cost 
and 𝑇𝑇𝑖𝑖𝑖𝑖

𝑚𝑚,𝑙𝑙 as the service time, respectively, when a type-𝑙𝑙 truck serves region 𝑐𝑐 with mode 𝑚𝑚; and the 

truck enters and exits region 𝑐𝑐 via node 𝑖𝑖, 𝑗𝑗 ∈  𝐵𝐵𝑐𝑐. We evaluate  for all possible combinations of 
𝑖𝑖, 𝑗𝑗, 𝑙𝑙, and 𝑚𝑚, which will later be used as inputs at the upper level, such that the optimal choice of 
access nodes, together with pertinent operational decisions, will be determined in conjunction with 
the routing of the truck that serves this region. 

Depot–Drone (DD) 
We first consider the depot–drone strategy. Suppose drones are directly dispatched from a depot 
located 𝑆𝑆 units of distance away from the center of the region. The optimal paths of drones depend 
on 𝑆𝑆 and the characteristics of Ω𝑐𝑐 and hence would require solving the PDEs with boundary 
conditions specifically modified for each region. However, a feasible solution can be approximated to 
avoid expensive and repetitive computations. First, we approximately treat the convex as a circle. 
According to the numerical results by She and Ouyang (2021), aerial congestion mainly takes effect 
around the depot near the ground; and drones can travel almost at a free-flow speed at their peak 
heights. With such an insight, we construct a feasible drone-routing scheme, as presented in Figure 2. 
Consider the inbound (return) leg, where the trajectory of each drone is split into the ascending 
branch and descending branch at its peak height from the ground. Drones first identify the optimal 
paths as if the depot is located at the center of the delivery region. Each drone follows the ascending 
branch of its individual optimal path toward the peak height, travels horizontally to the same relative 
position from the depot, and then descends and lands at the depot along the descending branch of 
the optimal path.  

 
Figure 3. Diagram. A feasible scheme of drone-only delivery. 

As such, the complete delivery route for a drone equivalently consists of the local parts along the 
optimal path and the line-haul part of length 𝑆𝑆 involving only horizontal movement. The round-trip 

delivery time for an average drone using this feasible trajectory is given by . 
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Using Little’s formula, the number of drones required to sustain the service in the region can be 
estimated as 

 
Figure 4. Equation. Number of drones required. 

Additionally, from the customers’ perspective, the service frequency impacts the customers’ waiting 
time and the value depreciation of the goods. Assuming nondiscriminative service (i.e., parcels are 
delivered in random orders without prioritizing certain customers), the average waiting time of each 
customer is half of the headway 𝐻𝐻. 

The average delivery cost per parcel is computed as 

 
Figure 5. Equation. Average delivery cost for drone-only delivery. 

where 𝑤𝑤𝑑𝑑 denotes the drones’ battery-power-consumption rate, 𝑤𝑤𝑑𝑑𝑑𝑑 denotes the drones’ 
preparation cost per drone per delivery window, and 𝑤𝑤𝑐𝑐 denotes the average cost per unit time 
incurred by the customers, respectively. Here, 𝑇𝑇𝑖𝑖𝑖𝑖0  =  𝐻𝐻′ ≤  𝐻𝐻, where 𝐻𝐻′ =  𝐻𝐻 means the drone-
delivery service is conducted continuously (e.g., 24 hours a day) 

Stationary Truck–Drone (STD) 
When serving region 𝑐𝑐 with STD mode, the truck temporarily stops at a street node closest to the 
center of the domain 𝑐𝑐, denoted as 𝑛𝑛𝑐𝑐. The drones are dispatched from the stopped truck to conduct 
delivery service within the region, and the drones’ operation and preparation costs are evaluated in 
the same way as the local parts in Eq.(3).  

The overall operating cost is given by 

 
Figure 6. Equation. Average delivery cost for STD delivery. 
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where 𝑃𝑃(𝑖𝑖, 𝑗𝑗) denotes the shortest path distance from node 𝑖𝑖 to node 𝑗𝑗 via edges in 𝐸𝐸. Meanwhile, 
the required drone fleet size is estimated as ; and the service time for the 
region is given by 

 
Figure 7. Equation. Service time for STD delivery. 

Mobile Truck–Drone (MTD) 
With drones capable of simultaneously fulfilling local deliveries, the truck traverses the delivery 
region along a path such that all demands are served. We assume that the carrier employs the swath 
algorithm for the probabilistic traveling-salesman problem as detailed by Daganzo (1984) to cover the 
region 𝑐𝑐. According to this algorithm, the truck traverses the region along the center of a “swath” 
with a width of 2𝑊𝑊𝑐𝑐 (where 𝑊𝑊𝑐𝑐 equivalently represents the span of the service range on each side of 
the swath), while maintaining a constant speed 𝑣𝑣𝑡𝑡,𝑐𝑐. The optimal design of the service strategy thus 
poses a nontrivial covering-path problem depending on Ω𝑐𝑐 and �̅�𝜌0. We approach this problem by first 
choosing 𝑊𝑊𝑐𝑐 and 𝑣𝑣𝑡𝑡,𝑐𝑐 that optimize the asymptotic performance of the delivery operation and 
subsequently constructing the swath. 

Suppose that the delivery region is covered by a dense roadway network that enables trucks to travel 
in any direction for any distance. Such a network allows a swath of length |Ω𝑐𝑐|/2𝑊𝑊𝑐𝑐 to perfectly cover 
the region. Meanwhile, a fleet of  drones must be simultaneously operated to sustain 
the delivery service. The average delivery cost is given by 

 
Figure 8. Equation. Average delivery cost for MTD delivery. 

and in so doing, we determine 𝑊𝑊𝑐𝑐 and 𝑣𝑣𝑡𝑡,𝑐𝑐 such that the average delivery cost is minimized for Ω𝑐𝑐 . 

An efficient heuristic to construct such a feasible swath ending with designated entry and exit points 𝑖𝑖 
and 𝑗𝑗 can be achieved in two steps. The first step is to identify a subset of nodes in 𝐼𝐼𝑐𝑐′ ⊆  𝐼𝐼𝑐𝑐  that are 
roughly 2𝑊𝑊𝑐𝑐 apart, which represents a discrete aggregation of the demands, such that by visiting 
these nodes, all demands in Ω𝑐𝑐 are considered serviced. We can find 𝐼𝐼𝑐𝑐′  by masking 𝐼𝐼𝑐𝑐 with a square 
mesh of size 2𝑊𝑊𝑐𝑐 and then include an interior node in 𝐼𝐼𝑐𝑐′  if it is the closest node to the center of any of 
the squares. The second step is to visit all nodes in 𝐼𝐼𝑐𝑐′  at least once in the most efficient way. This 
problem is essentially a traveling-salesman problem (TSP) with a given origin and destination pair 
(𝑖𝑖, 𝑗𝑗), also referred to as the open-TSP, which can be reduced to a TSP with the addition of a dummy 
edge. 
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The TSP has been studied extensively and is known to be NP-complete. Although there exists plenty 
of solution algorithms (e.g., Lin-Kernighan (Helsgaun, 2000)), the superpolynomial running time can 
be of concern, considering that the problem must be solved for a large number of instances before 
every delivery mission. An efficient alternative heuristic to construct a near-optimal solution to the 
TSP is by performing a forward–backward sweep. To find the open-TSP path for the graph presented 
in Figure 3a, we first map a square mesh with a size of 2𝑊𝑊. Starting from one corner (e.g., the top-left 
corner), we construct the shortest swath to reach another corner (e.g., the bottom-right corner), 
while all meshes are visited, as illustrated in Figure 3c. A change of sweeping direction is applied to 
avoid deadheading due to the “inconvenient” positioning of the starting and ending point, as 
illustrated by the last two rows of the mesh in Figure 3c. This adaptation can be achieved easily in 
constant running time because the swath logic can be determined given the dimension of the mesh 
grid (i.e., odd or even numbers of rows and columns) and the starting/ending corners (i.e., same side 
on row, column, or diagonal). The order by which the nodes in 𝐼𝐼𝑐𝑐′  are visited along the sweeping 
swath directly gives a feasible solution to the open-TSP, as given in Figure 3d. Deadheadings are then 
appended as necessary to connect to the desired entry/exit points. Note that, as compared to the 
optimal solution in Figure 3b, the feasible solution in Figure 3d is suboptimal, mainly due to the 
irregularity of the graph that does not align with the swath obtained from a grid. In reality, the 
assumption of a dense street network is very likely violated and will cause deteriorated performance. 
To compensate for such a deficit, we examine another swath by starting in a different direction, as 
presented in Figure 3e, and obtained a potentially improved solution in Figure 3f. The overall 
complexity to solve the open-TSP is linear to 𝐼𝐼𝑐𝑐′ . Because various entry/exit points are to be evaluated 
for the region, we examine 4 ×  2 ×  3 =  24 possible paths, starting with each of the four corners, 
along two possible directions, and ending at each of the other corners. 

Denoting the optimal TSP length from 𝑖𝑖 to 𝑗𝑗 obtained using this approach as 𝑃𝑃𝑖𝑖𝑖𝑖2 , we substitute it back 
into Eq.(6) to replace the swath length and recompute the average delivery cost as 

 
Figure 9. Equation. Average delivery cost for MTD delivery. 

while the service time is given by 𝑇𝑇𝑖𝑖𝑖𝑖2  =
𝑃𝑃𝑖𝑖𝑖𝑖
2

𝑣𝑣𝑡𝑡,𝑐𝑐
 . 
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Figure 10. Diagrams. Covering path constructed by a forward–backward heuristics. 

Truck-only Delivery 
In certain urban areas, drone operation may be prohibited due to complex high-rising obstacles or 
regulatory restrictions, necessitating the inclusion of conventional truck-only delivery in a drone-
based delivery system. The routing of trucks in the truck-only delivery mode is influenced by the 
locations of the specified demand points. Therefore, we specifically model and evaluate the truck-
only delivery mode based on a set of discrete demand points 𝐷𝐷𝑐𝑐. During the tactical phase, the cost 
assessment can be obtained by averaging multiple instances of demands generated randomly from 
the desired distribution. We assume that the city permits temporary parking anywhere on its streets. 
For each delivery, the delivery personnel parks the truck at the nearest point on the street closest to 
the customer’s location and walks to the customer’s doorstep at a speed of 𝑣𝑣𝑤𝑤𝑤𝑤𝑙𝑙𝑤𝑤  over the distance 
ℎ𝑑𝑑. Consequently, a subset of streets will be associated with specific demands and must be traversed 
by the truck. This task can be formulated as the rural-postman problem, which is a generalization of 
the Chinese-postman problem (Nobert and Picard, 1996). To specify the desired starting and ending 



14 

points 𝑖𝑖, 𝑗𝑗, we add a dummy edge (𝑖𝑖, 𝑗𝑗) and connect 𝑖𝑖, 𝑗𝑗 to all nodes in 𝐼𝐼𝑐𝑐 Although the problem is NP-
hard, heuristic algorithms exist to obtain near-optimal approximations, such as those based on 
balanced-graph construction and Tabu search (Corberán et al., 2000). 

We denote the resulting path length as 𝑃𝑃𝑖𝑖𝑖𝑖3 . The overall delivery cost per parcel can then be given as 

 
Figure 11. Equation. Average delivery cost for truck-only delivery. 

and the service time is given by 

 
Figure 12. Equation. Service time for truck-only delivery. 

TRUCK-ROUTE PLANNING 
At the upper level, the logistics carrier determines the routing and scheduling strategy to serve all 
regions. The truck and drone fleet required to provide service in a reasonable working time incurs 
investment and maintenance costs, which must be accounted for. These decisions are intertwined; 
but a natural decision procedure consists of first generating routes that serve all regions, then 
accommodating these routes with a minimum number of vehicles. 

The trucks are to be routed such that each region is accessed via a pair of boundary nodes and 
serviced by exactly one truck in a single visit. Conceptually, this problem is similar to the set-VRP, also 
known as the generalized VRP, where candidate nodes are separated into clusters; and exactly one 
node from each cluster is selected to be visited. The key difference is that our problem allows visiting 
1 or 2 node(s) in each cluster, whereas the former corresponds to choosing the same node as both 
the entry and exit nodes. Further, the delivery cost for the region differs by the choice of access 
nodes, delivery modes, and truck types. 

Let parameter 𝜇𝜇𝑚𝑚𝑙𝑙  =  1 if a truck of type 𝑙𝑙 can be used to fulfill a delivery task of mode 𝑚𝑚. Each 
region can be served by one of the candidate modes using a truck of a compatible type. We call this 
problem a multi-type, multimodal, 2-set VRP (MM2VRP), which is defined as follows. To facilitate the 
previous development, we first construct an abstract graph, based on the roadway graph 𝐺𝐺, that is 
suitable for modeling and solving. When planning for the truck routes, we need to see only the 
boundary nodes 𝐵𝐵𝑐𝑐 of subregion 𝑐𝑐 and ignore all inner nodes in 𝐼𝐼𝑐𝑐. We create a dummy node for each 
region 𝑐𝑐 at its center 𝑛𝑛𝑐𝑐, connect it to every boundary node of the region with edges {𝑛𝑛𝑐𝑐} ×  𝐵𝐵𝑐𝑐, and 
assign zero weights. This dummy node will always be visited between the two access points. Further, 

we denote the interregional edges , which connect the boundary nodes between 
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every pair of regions; and the depot-regional edges ∪∀ 𝑐𝑐 { {𝑜𝑜} × 𝐵𝐵𝑐𝑐}, which connect all boundary 
nodes to the depot node 𝑜𝑜. The abstract network to be considered herein is 𝐺𝐺_𝑎𝑎 = (𝑉𝑉𝑤𝑤,𝐸𝐸𝑤𝑤). Each 
edge is assigned a weight equal to the shortest path distance between the corresponding nodes in 𝐺𝐺. 

The MM2VRP involves the following decision variables. Let binary variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑤𝑤  =  1,∀ (𝑖𝑖, 𝑗𝑗) ∈  𝐸𝐸𝑤𝑤 ,∀ 𝑘𝑘 
if route 𝑘𝑘 traverses edge (𝑖𝑖, 𝑗𝑗). Let binary variable 𝑦𝑦𝑐𝑐𝑚𝑚  =  1,∀ 𝑐𝑐,∀ 𝑚𝑚 ∈  𝑀𝑀 if region 𝑐𝑐 is serviced with 
mode 𝑚𝑚. Let binary variable 𝑧𝑧𝑐𝑐𝑙𝑙  =  1,∀ 𝑐𝑐,∀ 𝑙𝑙 ∈  𝐿𝐿 if region 𝑐𝑐 is serviced with a truck of type 𝑙𝑙. Let 
𝑢𝑢𝑖𝑖𝑖𝑖 ,∀ (𝑖𝑖, 𝑗𝑗) ∈  𝐸𝐸𝑤𝑤 denote the topological order by which the edges are traversed by any truck. To aid 
modeling, we also define the following auxiliary variables, which are determined by the decision 
variables. Let 𝜏𝜏𝑖𝑖𝑖𝑖𝑚𝑚𝑙𝑙  =  1,∀ 𝑖𝑖, 𝑗𝑗 ∈  𝐵𝐵𝑐𝑐,∀ 𝑐𝑐,𝑚𝑚 if nodes 𝑖𝑖 and 𝑗𝑗 are chosen to be the entry and exit points, 
respectively, to serve region 𝑐𝑐 by a type-𝑙𝑙 conducting mode 𝑚𝑚. Let 𝜂𝜂𝑖𝑖𝑖𝑖𝑙𝑙  =  1,∀ (𝑖𝑖, 𝑗𝑗) ∈  𝐸𝐸𝑤𝑤,∀ 𝑙𝑙 if edge 
(𝑖𝑖, 𝑗𝑗) is traversed by a truck of type-𝑙𝑙. Let 𝜁𝜁𝑐𝑐𝑤𝑤   =  1,∀ 𝑐𝑐,𝑘𝑘 if region 𝑐𝑐 is served by route 𝑘𝑘. Let 
𝜎𝜎𝑤𝑤𝑙𝑙  ,∀ 𝑘𝑘, 𝑙𝑙 if route 𝑘𝑘 is assigned to a truck of type 𝑙𝑙. 

The solution to the MM2VRP must satisfy the following set of constraints. The flow conservation at 
intermediate nodes requires 

 
Figure 13. Equation. Flow-conservation constraints. 

Where 𝛿𝛿−(𝑖𝑖) and 𝛿𝛿+(𝑖𝑖) denote the parents and children of node 𝑖𝑖, respectively. 

We require each edge to be traversed in at most one route, as stated by 

 
Figure 14. Equation. Single-edge traverse constraints. 

Note that these constraints apply to the abstract graph and allow multiple traversing of a real street 
edge as needed. 

The number of active routes is given by 

 
Figure 15. Equation. Number of active routes. 

The subtours are eliminated by 
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Figure 16. Equation. Subtour-elimination constraints. 

Note that the topological order is defined over edges, as opposed to nodes as done in many 
conventional formulations (e.g., (Chirstofides et al., 1981). This purposeful choice allows visiting the 
same node twice in cases where the entry/exit nodes for a region are chosen to be the same. 

Each dummy node, representing the fulfillment of the corresponding region, must be visited by 
exactly one route, given by 

 
Figure 17. Equation. Dummy-node constraints. 

which, together with Eq.(13), enforces the entry-dummy-exit sequential visiting rule. 

Meanwhile, each region must be serviced by exactly one mode and by one truck type, as stated by 

 
Figure 18. Equation. Region-visiting rules. 

Each route must be assigned exactly one truck type, as given by 

 
Figure 19. Equation. Truck type, route assignment. 

The truck-capacity and route-duration constraints are respectively stated as 
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Figure 20. Equation. Truck-capacity and route-duration constraints. 

where 𝑇𝑇0 denotes the limit of route duration. 

All auxiliary variables can be determined given {𝑥𝑥𝑖𝑖𝑖𝑖𝑤𝑤 ,∀ (𝑖𝑖, 𝑗𝑗),𝑘𝑘}, {𝑦𝑦𝑐𝑐𝑚𝑚,∀ 𝑐𝑐,𝑚𝑚}, and {𝑧𝑧𝑐𝑐𝑙𝑙,∀ 𝑐𝑐, 𝑙𝑙}. These 
relations are stated as the following, as linear constraints.  

For : 

 
Figure 21. Equation. Linear definition for tau. 

For {𝜁𝜁𝑐𝑐𝑤𝑤 ,∀ 𝑐𝑐,𝑘𝑘}: 

 
Figure 22. Equation. Linear definition for zeta. 

Denoting 𝐶𝐶𝑤𝑤  =  {𝑐𝑐: 𝜁𝜁𝑐𝑐𝑤𝑤   =  1}, and 𝑀𝑀𝑤𝑤  =  {𝑚𝑚 ∈  𝑀𝑀: 𝑦𝑦𝑐𝑐𝑚𝑚  =  1,∀ 𝑐𝑐 ∈  𝐶𝐶𝑤𝑤 }, {𝜎𝜎𝑤𝑤𝑙𝑙,∀ 𝑘𝑘, 𝑙𝑙} must satisfy 
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Figure 23. Equation. Linear definition for sigma. 

Here, 𝜎𝜎𝑤𝑤𝑙𝑙′  is an additional auxiliary variable, which equals 1 if route 𝑘𝑘 can be assigned to a truck of 
type 𝑙𝑙. 

Denoting 𝐾𝐾𝑙𝑙  =  {𝑘𝑘 ∈  𝐾𝐾:𝜎𝜎𝑤𝑤𝑙𝑙   =  1} and , {𝜂𝜂𝑖𝑖𝑖𝑖𝑙𝑙 ,∀ (𝑖𝑖, 𝑗𝑗) ∈
 𝐸𝐸𝑤𝑤,∀ 𝑙𝑙} must satisfy 

 
Figure 24. Equation. Linear definition for eta. 

Finally, the binary constraints on the explicit variables are given by 

 
Figure 25. Equation. Definition of decision variables. 

while all auxiliary variables are implicitly enforced to be binary. 

Denote the edge-traversing cost   and the truck-dispatching cost per route  for type-𝑙𝑙 
truck, respectively. The objective function minimizes the total operating cost, including the 
deadheading cost to travel between regions and depots, the handling cost for each route, and the 
service cost for each region, i.e., 

 
Figure 26. Equation. Objective function for MM2VRP. 
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The MM2VRP formulation involves integer variables, linear constraints, and a linear objective 
function. The number of variables, however, is very large, making it computationally difficult to close 
the duality gap in a reasonable time. For small instances, it can be solved exactly using branch-and-
bound and/or cutting-plane methods provided by commercial solvers. For larger problem instances 
arising from servicing large and complex roadway networks, the exact solution may become 
intractable. However, the decision variables conceptually correspond to two subproblems, namely, 
the assignment problem and the routing problem, respectively, which can be naturally decoupled and 
solved in a hierarchical manner. 

If we fix {𝑧𝑧𝑐𝑐𝑙𝑙} as known, MM2VRP reduces to a single-type, multimode version of the problem, 
denoted as SM2VRP, which exclusively concerns the set of regions 𝐶𝐶𝑙𝑙  =  {𝑐𝑐 ∈  𝐶𝐶 ∶  𝑧𝑧𝑐𝑐𝑙𝑙  =  1} for each 
type 𝑙𝑙, such that ∪𝑙𝑙  𝐶𝐶𝑙𝑙  =  𝐶𝐶. Then, the service mode for region 𝑐𝑐 can be selected from candidate 
modes 𝑀𝑀𝑙𝑙  =  {𝑚𝑚 ∈  𝑀𝑀: 𝜇𝜇𝑚𝑚𝑙𝑙  =  1}. This selection is independent of the cross-regional routing 
decisions; hence {𝑦𝑦𝑐𝑐𝑚𝑚} can be determined by minimizing the covering cost for every region 
individually. As such, for each 𝑙𝑙, we can construct a reduced abstract graph, where SM2VRP 
resembles the classical capacitated VRP except for the choices of service mode and accessing nodes 
that are entangled with the interregional routing decisions. If we greedily optimize these decisions, 
we can construct a heuristic method modified from the savings heuristics (Altinel and Öncan, 2005) to 
efficiently obtain a near-optimal solution. 

Considering truck type 𝑙𝑙, the key steps to solve the SM2VRP are as follows. First, we compute the cost 
to service a single region in a route (i.e., a shuttle route) by choosing the optimal access points for 
each region, with the cost-minimizing mode, given by 

 
Figure 27. Equation. Shuttle-routes costs. 

and in so doing initialize the optimal access point(s) and service mode for each region. Suppose in the 
current solution, region 𝑐𝑐1 is serviced via points 𝑖𝑖1, 𝑗𝑗1 ∈  𝐵𝐵𝑐𝑐1 with mode 𝑚𝑚1, and region 𝑐𝑐2 is serviced 
via points 𝑖𝑖2, 𝑗𝑗2 ∈  𝐵𝐵𝑐𝑐2 with 𝑚𝑚2. If we consider a route {𝑜𝑜, . . . , 𝑐𝑐1, 𝑜𝑜} and another route {𝑜𝑜, 𝑐𝑐2, . . . , 𝑜𝑜}, 
and change only access nodes that are directly affected by the merge (i.e., 𝑗𝑗1 and 𝑖𝑖2), we can compute 
the saving from the merge as 

 
Figure 28. Equation. Savings of route merges. 

Note that although we simply subscribe 𝑠𝑠𝑐𝑐1,𝑐𝑐2   with 𝑐𝑐1, 𝑐𝑐2, the savings are in fact path-dependent; that 
is, the order by which the routes are merged determines the selection of access points and hence the 
savings. We compensate for such a simplification by updating the savings pertinent to 𝑐𝑐1 and 𝑐𝑐2 using 
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Eq. (24) in each iteration before merging. Then, we merge the valid (i.e., not violating the capacity 
and route-duration constraints) pair of routes with the highest saving. 

The assignment problem, in contrast, optimizes the same objective function Eq.(22) and involves only 
binary variables {𝑧𝑧𝑐𝑐𝑙𝑙}, while other variables solve the corresponding SM2VRP. A meta-heuristics, such 
as the simulated-annealing algorithm (Bertimas and Tsitsiklis, 1993), is suitable for selecting the 
optimal {𝑧𝑧𝑐𝑐𝑙𝑙}. Starting from a feasible solution, the algorithm randomly explores the neighborhood of 
the current solution, where candidates can be obtained by randomly perturbing the one-hot rows of 
{𝑧𝑧𝑐𝑐𝑙𝑙}. 

The MM2VRP formulates the optimal delivery strategies under a specific demand pattern, which is 
regulated by the delivery headway 𝐻𝐻. As part of the tactical-phase decisions, the optimal 𝐻𝐻 can be 
determined by solving the MM2VRP over a range of candidate values. 

The integrated algorithm to solve MM2VRP is summarized in Figure 4. 

 
Figure 29. Chart. Algorithm for solving MM2VRP. 

TRUCK-FLEET SCHEDULING 

Suppose for truck type 𝑙𝑙, a set of truck routes is generated by solving the MM2VRP, each with a total 
duration 𝑇𝑇𝑤𝑤. The fleet-sizing problem finds the assignment of routes to the smallest fleet of trucks, 
such that the total duration of work shifts for each truck does not exceed the limit 𝑇𝑇0. In its simplest 
form (Mingozzi et al., 2013), this problem can be formulated as a bin-packing problem, for which the 
first-fit decreasing algorithm is a very efficient, greedy approach but can yield suboptimal results. 
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Alternatively, this problem can be solved exactly using dynamic programming. Suppose we store the 
required time to complete each route in a 1-indexed array {𝑇𝑇𝑤𝑤,𝑘𝑘 = 1, … }. Denote 𝐹𝐹𝑤𝑤′(𝑟𝑟) as the 
minimum number of trucks used when all routes with index 𝑘𝑘 ≥  𝑘𝑘′ have been assigned and when 
the current truck has 𝑟𝑟 units of time remaining in its shift. The optimal assignment must satisfy the 
Bellman equation: 

 
Figure 30. Equation. Bellman equation for truck-fleet scheduling. 

Here, 𝐹𝐹𝑤𝑤′+1(𝑟𝑟 −  𝑇𝑇𝑤𝑤′) corresponds to the situation of packing a route to the current truck, and 1 +
𝐹𝐹𝑤𝑤′+1(𝑇𝑇0  −  𝑇𝑇𝑤𝑤′) corresponds to assigning a new truck. By initializing with 𝐹𝐹𝐾𝐾′+1(𝑟𝑟) =  0,∀ 𝑟𝑟 and 
iterating backward, the minimum number of type-𝑙𝑙 trucks required is given by min

𝑟𝑟
𝐹𝐹1(𝑟𝑟) . The 

optimal assignment of routes to trucks can also be obtained by tracking the actions taken in solving 
Eq.(25). Subsequently, the required drone-fleet size associated with each truck can be collated as the 
largest fleet size required to serve every region, with the corresponding mode covered by the truck in 
all routes. 
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CHAPTER 4: NUMERICAL RESULTS AND CASE STUDY 
In this section, we apply the proposed design framework to a series of numerical examples. The 
design framework is implemented in Python, with FEniCS (Logg et al., 2012) used for the finite-
element functionalities, Tensorflow (Abadi et al., 2016) for the machine learning functionalities, and 
Gurobi (Gurobi, 2021) as the mixed-integer program solver. All numerical cases are run on a personal 
computer with a 2.3-GHz CPU and 16-GB RAM. 

The parameters of the congestion function used in MTD mode, which facilitates a density-based 
function, are the same as those used by She and Ouyang (2022), based on which the parameters used 
in DD and STD modes, where a flux-based function is used, are determined such that key quantities 
(e.g., maximum flux capacity and stagnation density) are in accordance. For the drones’ operating 
cost, we take 𝑐𝑐𝑑𝑑  = $0.5/drone-hr and 𝑤𝑤𝑑𝑑𝑑𝑑 = $1/drone (Sudbury and Hutchinson, 2016).  

We consider two types of trucks. Type-1 truck is the conventional delivery truck currently used by the 
industry and can be used only for the truck-only delivery mode, for which we assume take trucking 
cost 𝑐𝑐𝑡𝑡1  =  $3/mi (Williams and Murray, 2020). Type-2 truck is equipped with drone-launching and -
charging functionalities and is compatible with STD and MTD modes. It can also be used for 
conventional truck-only delivery if desired. There is not yet any credible estimation of the commercial 
price for such enhancement of compatibility. We first preliminarily assume 𝑐𝑐𝑡𝑡2  =  𝑐𝑐𝑡𝑡1  =  $3/mi and 
will examine its impact on operational decisions in later analysis. Meanwhile, we assume both truck 
types incur dispatching cost 𝑐𝑐1̅  =  𝑐𝑐̅2  =  $50 per dispatch and have the same capacity of 1,000 
parcels. Either type of truck is operated by a deliverer paid a salary of  $30/hr. The waiting cost is 
assumed 𝑤𝑤𝑐𝑐  =  $0.001/parcel-hr (Murray and Glidewell, 2019). We use a safe maximum speed for 
drones of 50 mph and a cruising speed for trucks of 30 mph. 

We first construct the cost envelope, which provides a convenient reference for selecting the delivery 
mode in solving the SM2VRP. Consider a city where streets form perfect square grids of spacing 0.1 
mi; a single circular demand region of area 𝐴𝐴 square miles, the same as those presented in Figure 1; 
anda depot located 𝑆𝑆 mi away from the center of the region, from which the logistic carrier 
dispatches vehicles to conduct delivery. We assume that the logistics carrier conducts daily delivery, 
during which period the demand region generates a regulated demand rate 𝜌𝜌0. For a range of 
combinations of 𝜌𝜌0 and 𝐴𝐴, where 𝜌𝜌0 ∈  {10, 50, 100, 200, 400, 1,000, 10,000, 50,000, 100,000} 
parcels per sq mi per day and 𝐴𝐴 ∈ {0.25, 0.5, 1, 2, 4} mi, we estimate the expected delivery cost per 
parcel using each mode. For the truck-only mode, which involves truck routing dependent on the 
realized demand, 20 sets of demand points are randomly drawn to determine the truck routes; and 
the average delivery cost is used. Taking 𝑆𝑆 =  10 and slicing at 𝐴𝐴 =  1, the delivery cost of each 
mode with respect to demand density is shown in Figure 5. The minimum of the four curves provides 
a cost envelope that indicates the optimal choice of delivery mode serving the region. As the most 
labor-intensive mode, conventional truck-only delivery incurs a service time proportional to the 
demand rate. 

Not surprisingly, the truck-only delivery mode is the least favorable mode under all demand levels 
due to the long service time, particularly when the labor cost is relatively expensive. Under low 
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demand density, the MTD mode demonstrates a similar trend to that of the truck-only mode, mainly 
due to the dominating trucking cost along a covering path. To the contrary, the STD mode incurs less 
truck-traveled distance and hence saves on the trucking cost. The DD mode does not involve trucking, 
hence incurs a much lower cost per delivery when the demand level is low. As the demand-density 
level rises, the service time of the truck-only delivery mode quickly violates the 24-hr-wall time 
constraints as the demand rate exceeds 400. The delivery cost for drone-based modes appears 
insensitive until the demand rate ramps up beyond 50,000, where aerial congestion starts 
significantly to impede delivery efficiency. The key merit of the MTD mode, as distinct from the DD 
and STD modes, is in the processing rate of demand; or equivalently, the number of drones 
simultaneously operating in the system. As a result, the delivery cost increases with a lower 
curvature, mainly due to the meliorated aerial congestion and the smaller fleet size required. 

 
Figure 31. Graph. Delivery-cost comparison vs. demand level. 

Similarly, we slice at 𝜌𝜌0  =  400 and plot the delivery cost per parcel for the four modes with respect 
to the area of the demand region in Figure 6. The conventional delivery mode is again the least 
favored among the values examined. The average delivery cost for the DD mode gradually increases 
with area size, due to the increasing length for serving distant customers and the ramping congestion. 
Overall, the size of the demand region demonstrated a similar impact on the average delivery cost. 



24 

 
Figure 32. Graph. Delivery-cost comparison vs. delivery-region size. 

We then illustrate the applicability of the design framework to real roadway networks, for which we 
take Rantoul, Illinois, USA, as an example. Six residential clusters are identified from the demographic 
survey; each generates a delivery-demand density of 200 per sq mi. A warehouse located at the 
southwest corner serves as the depot. Such a low demand level over a relatively small network 
promotes DD as the most favorable delivery mode. For illustrative purposes, we consider serving all 
regions with the MTD mode. Figure 7a shows a demand instance, and Figure 7b and Figure 7c show 
the corresponding routing strategy yielded by both solving the single-type, single-model 2VRP exactly 
using Gurobi and using the proposed heuristics, respectively. The Gurobi solver on average yielded an 
average delivery cost of $1.12 per parcel, and the proposed heuristics yielded $1.63 per parcel. Such 
a routing strategy can be fulfilled with just one truck at 42 drones. Such a gap is mainly due to the 
underperformance of the swath-based covering path algorithm on non-regular networks. In this 
example, the exact solution can be computed within 5 min, while the heuristics yield the result in 20 
sec.   

As the network grows, exactly solving the MM2VRP formulation becomes computationally 
prohibitive. Consider the urban area of Chicago, Illinois, which encloses a square area of 10 miles on 
the side. Several demand regions are identified, as presented in Figure 8a. In each of these regions, 
we postulate a demand distribution given by 

 
Figure 33. Equation. Demand pattern. 
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Such a function generates a demand distribution peaked at the square around the center and 
gradually decreases by 0.5-mi-wide stages at locations moving away from the center, as illustrated in 
Figure 9. With the insights brought by the cost envelopes, we can safely regard the truck-only delivery 
mode as inferior and consider only the other three modes. The result of route planning is shown in 
Figure 8b. In this network, even the precomputation of covering costs cannot be completed in 6 hr; 
and for the given covering costs, the MM2VRP cannot be solved exactly in another 6-hr-wall time. In 
contrast, the heuristics-based design procedure completes in less than 30 min. In this instance, the 
demand is serviced at an average cost of $1.94 per parcel with 9 trucks and 737 drones. 

 
Figure 34. Diagram. Rantoul, Illinois, example: (a) demand regions, (b) routes yielded by Gurobi, (c) 

routes yielded by heuristics. 

 
Figure 35. Diagram. Chicago, Illinois, example: (a) demand regions, (b) delivery routes. 
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Figure 36. Diagram. A hypothetical demand distribution. 

We now turn our attention back to the city with perfect grid streets and conduct further analysis to 
draw operational insights. Suppose the city spans a square 10 miles on the side and generates 
demand according to Eq.(9) from its center. The logistics carrier operates the delivery from a depot 
located at the southwest corner of the city. Figure 9b plots performance metrics of the results by 
solving the MM2VRP with respect to the delivery headway, which regulates the demand level. The 
delivery cost per parcel is plotted as the curve and demand percentages served by each mode as 
clustered columns. It can be observed that, in accordance with Figure 5, the DD mode is dominant 
under low demand levels. As demand accumulates, the DD mode and even the STD mode become 
warranted, mainly due to the trucking cost being diluted over the demands served. Overall, the 
delivery cost reduces as the delivery headway elongates; and for the illustrated instance, the longest 
allowed headway of 4 days is optimal. 

Among the said parameters, the logistics carrier may be specifically interested in the trucking cost 
and capacity of the type-2 truck, which largely influence the economical efficiency of the hybrid 
delivery schemes as an alternative to conventional delivery. We determine the optimal delivery 
strategies under a range of trucking cost 𝑐𝑐𝑡𝑡2 ∈  {0, 1, 2, 3, 5, 10} dollars and plot the corresponding 
performance metrics in Figure 10. Not surprisingly, as the trucking cost increases, the delivery cost 
also increases as the trucking component becomes more expensive. Meanwhile, the percentage of 
DD mode increases, as other modes involving trucking become less profitable. When the trucking cost 
reaches $10 per mi, the DD mode dominates for the given network. We conduct a similar analysis 
with respect to 𝑄𝑄2 ∈  {500, 1,000, 1,500, 2,000} and plot in Figure 11. As truck capacity increases, 
trucks can cover more partitioned areas, potentially allowing more efficient routes. Consequently, 
more demands are better served with hybrid truck–drone delivery (i.e., STD and MTD); and the 
average delivery cost is reduced.  
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Figure 37. Graph. Cost per delivery and mode percentage with respect to delivery headway. 

 
Figure 38. Graph. Cost per delivery and mode percentage with respect to the cargo capacity of 

trucks, 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 
This paper presents an integrated design framework for a drone-based delivery system, combining 
drones and trucks to optimize last-mile deliveries. The framework incorporates multiple delivery 
modes and vehicle types, allowing for flexible and efficient delivery operations. By using a partition-
routing approach, the delivery domain is divided into regions, each serviced by a specific mode and 
type of vehicle. The framework considers four delivery modes: depot–drone, stationary truck–drone, 
mobile truck–drone, and truck-only delivery. The collective routing decisions of both trucks and 
drones are modeled in a variant of the multi-type, multimode vehicle-routing problem as a mixed-
integer program. An efficient heuristic algorithm is proposed to solve each component in the 
integrated design framework. To support decision-making, a cost envelope is constructed to compare 
the performance of these modes. The applicability of the model is demonstrated on real roadway 
networks. Numerical analyses are conducted on a grid network to draw insights into the impact of 
key operational parameters.  

The research presented in this paper can be extended in several directions. First, the heuristic 
algorithm used for solving the covering-path problem could be enhanced to provide more efficient 
solutions for general and complex graphs. This process could involve adaptive modifications to 
improve computational efficiency without sacrificing performance. Second, the cost envelope, which 
largely governs the selection of delivery mode, is a numerical result of hypothetical parameters 
defining local travel costs, particularly the drones’ congestion function. Further calibration, either 
with simulation or experiments, is needed to enhance the strength of reference of the cost envelope. 
Third, in evaluating the local delivery cost with the mobile truck–drone scheme, a surrogate model 
was constructed by solving the PDEs using PINN under various configurations. A recent thread of 
research explores the possibility of using PINN to evaluate directly the gradient of operation cost with 
respect to design parameters, such as truck speed or demand rate, so as to integrate the PDE solution 
into a gradient-based design model that optimizes operational decisions. Finally, in the current design 
framework, the vehicle-fleet sizes for trucks and drones are determined so as to support the 
operational strategies that minimize the average delivery cost. The fleet sizes can also be integrated 
into the design framework as decision variables that significantly impact the decision-making of all 
subproblems. 
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